Combinatorial telescoping for an identity of Andrews on parity in partitions

نویسندگان

  • William Y. C. Chen
  • Daniel K. Du
  • Charles B. Mei
چکیده

Following the method of combinatorial telescoping for alternating sums given by Chen, Hou and Mu, we present a combinatorial telescoping approach to partition identities on sums of positive terms. By giving a classification of the combinatorial objects corresponding to a sum of positive terms, we establish bijections that lead a telescoping relation. We illustrate this idea by giving a combinatorial telescoping relation for a classical identity of MacMahon. Recently, Andrews posed a problem of finding a combinatorial proof of an identity on the q-little Jacobi polynomials which was derived based on a recurrence relation. We find a combinatorial classification of certain triples of partitions and a sequence of bijections. By the method of cancelation, we see that there exists an involution for a recurrence relation that implies the identity of Andrews. AMS Classification: 05A17, 11P83

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-conjugate Vector Partitions and the Parity of the Spt-function

Abstract. Let spt(n) denote the total number of appearances of the smallest parts in all the partitions of n. Recently, we found new combinatorial interpretations of congruences for the spt-function modulo 5 and 7. These interpretations were in terms of a restricted set of weighted vector partitions which we call S-partitions. We prove that the number of self-conjugate S-partitions, counted wit...

متن کامل

Ramanujan’s Partial Theta Series and Parity in Partitions

A partial theta series identity from Ramanujan’s lost notebook has a connection with some parity problems in partitions studied by Andrews in [3], where 15 open problems are listed. In this paper, the partial theta series identity of Ramanujan is revisited and answers to Questions 9 and 10 of Andrews are provided.

متن کامل

The Dual of Göllnitz’s (big) Partition Theorem*

A Rogers-Ramanujan (R-R) type identity is a q-hypergeometric identity in the form of an infinite (possibly multiple) series equals an infinite product. The series is the generating function of partitions whose parts satisfy certain difference conditions, whereas the product is the generating function of partitions whose parts usually satisfy certain congruence conditions. For a discussion of a ...

متن کامل

Overpartition Theorems of the Rogers-ramanujan Type

We give one-parameter overpartition-theoretic analogues of two classical families of partition identities: Andrews’ combinatorial generalization of the Gollnitz-Gordon identities and a theorem of Andrews and Santos on partitions with attached odd parts. We also discuss geometric counterparts arising from multiple q-series identities. These involve representations of overpartitions in terms of g...

متن کامل

A Bijection for Partitions with All Ranks at Least t Extended

It follows from work of Andrews and Bressoud that for t the number of partitions of n with all successive ranks at least t is equal to the number of partitions of n with no part of size t However no simple combinatorial explanation of this fact has appeared in the literature We give a simple bijection for this identity which generalizes a result of Cheema and Gordon for rowed plane partitions T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012